Currently, we hand-record all the serial numbers embossed onto badges into logbooks, and then use those logbooks to try to prevent future serial numbers from
being duplicated. It’s a very manual and tedious process, full of opportunities for errors.

So, using C# and a local Access database (though this can be easily changed to a more complex database hosted on a server), I've been working on a Windows
program that would replace the logbooks and instead record all serial numbers into the database, using SQL statements to ensure that there will be no
duplications.

I've also added some reporting/look-up functions to the program, and | have to say, | think this project has come together great!

Some screen shots:

This is the Welcome window when the application first starts, self-explanatory. Oh, good time to mention that I’'m colorblind. | was aiming for a kind of
Honeywell color scheme layout — might be too pinkish...

m o |[@] =

Honeywell American Meter Badges

Order / Serial Number Entry

Review / Reporting

Set Up / Maintenance

If the user selects the first option, Order / Serial Number
Entry, they’ll get to the workhorse of the program, which has
a lot going on.

The order number in this example has already been added to
the database, so the information in the fields is being pulled
from a couple different tables. Buttons and fields are made
available to use depending on varying criteria. The drop-
down fields are linked to database tables so users can only
select applicable options, and there are also validation
methods to ensure that the information entered for the other
fields is correct.

Had this order number not already been in the database, the
user would have been prompted to enter the basic order
details, then the Manufacturing and Customer badge fields
would become available.

. American Meter Orders

Order Details

Order Number: 2622889 Add Modify Delete
Order Motes: order notes
Customer Information
b Name: |Knoxville Utilities Board Noles:

Manufacturing Badge

Add Madify Delete

Finished Badge Part #: 49040G002

Special Requirement: LYNS

nclude as part of Serial #7
Year: (19 - N

Prefix: K Y N
Beginning Seral #: 858163
Ending Serial # 859162
Court: 1000

Additional Notes: | standard mfg badge

Verify Serial # Availability Save Cancel

Manufacturing Badge Status Info:
Curment status of the Manufacturing Badgesis : RESERVED

Press button to change status to Complete: Complete

Customer Badge

Add Maodify Delete

Finished Badge Part #: 55276G239

Include as part of Seral #?
Prefix: KUBO by N

Suffix: Y N
Beginning Serial #: 171513
Ending Serial #: 172512
Count: 1000

Additional Notes:

Verify Serial # Availability Save Cancel

Customer Badge Status Info:
Curment status of the Customer Badgesis : RESERVED

Press button to change status to Complete: Complete

Back to the Welcome window - if the user selects the Review / Reporting button, they’d see:

W fzporting
Search by
I T 1 "
| Owder# | | Cusiomer# | | Sersi#f | | MFGBadge# | CUSTBadge# | Reset
All Orders Manufacturing Badge Information Customer Badge Information
Oeder 7 Order Notes Cusiomer & ' finshed Badge Requremert Year Include? Preix Include 7 Beginning Serial Ening Senal Guartly Status Pob=s finmshed Badge Prefix Include? Suffix Inchde? Begimning Senal Ending Serial Quantiy Status Notes
Ol = 0 90406102 tns | 19 | N K v nsa1ea] WS162 1000 AESFRY standard mig badge SSIEGZT | KUBD| | 171513 172512 1000 | RESEAV. |
29999 s anoder umberthalie.. | 54 0]] 0 0 0
626823 famous IGC order 100775 45040G001 LYNS 19 N II' ¥ | ma) maz 3000 RESERV.. put aleading zem beforet.. S527R022 | 681451 684450 | 3,000 | RESERV... fblu:k:nnded badges

(I have just a few sample orders entered)
This Windows form works great! We (the badge station workers) currently have no way to look up anything by customer number, and to find anything by order

number or serial number details thumbing through the pages and pages of different logbooks.

Again, back to the Welcome window - if the user selects Set-Up / Maintenance, they’d see:

Bl 5et-Up / Maintenance — O X

—

Finished Badges Blank Badges

And if they selected Customers from that window, they’d see:

W customers — O x
Customer Number: I:l CustomerNumber CustomerName CustomerStatus RequirementCode Motes ~
4 & Alliant Energy A | 8Ys
3 Ameren A LYNS no letter, year wil
4 Arkla (Certerpoin... |A SYS
G I:l 5 Mhens Ltilties B... |A LYNS
& | Atmos Energy Mi... |A | SYNS
RequrementCode: [| 7 Amost Energy |A LYNS
8 Boston Gas A LYNS
Notes 9 BostonGasCo |A SYNS
10 |Canada (Union G... |A |LYS
1 Cartamint Fr=r | & qvs w
< >
Add Modify Delete Refresh List Close Window

This window shows all the current customers and offers the ability to add or modify. The delete key only changes the customer status to inactive, thus saving all
history. The other windows from the set-up screens run mostly the same.

Some things that | haven’t built in yet are:

Multiple users with passwords, and security levels for those users

Date/time stamps for changes/entries to the database

We have two customers that require a 3" badge (sticker, actually) with serial numbers, but | believe those could be incorporated into the next point —
Camcodes. The database could be expanded to track the badges that come from an outside source. This would certainly help our Camcode buyer, who
occasionally must come out and dig through our badge drawers to physically see what serial numbers we have stored (the logbooks are confusing).
Some customer badges don’t have serial numbers (name + other info only).

Some customers require a 4-digit year on their Manufacturing badges, vs. a 2-digit year I've added some example of the code at the end....

| believe I've utilized Object Oriented Programming practices to ensure security for the program and have created the database and its update statements as to

prevent SQL Injection.

For customer badges, to check if only verifying the serial numbers are not duplicated:

public static Check4Duplicates CustVerifySerialOnly(int beginning, int ending, int orderNumber, string custNumber)

{

¥

OleDbConnection connection = SerialsDatabaseDB.GetConnection();
string checkStatement
"FROM Orders "

"OR ((OrderNumber <> @orderNumber) AND (CustomerNumber =
"OR ((OrderNumber <> @orderNumber) AND (CustomerNumber =

+ o+ 4

"SELECT OrderNumber, CustBeginningSerial, CustEndingSerial, CustomerNumber "

"WHERE ((OrderNumber <> @orderNumber) AND (CustomerNumber = @custNumber) AND (CustBeginningSerial Between @beginning AND @ending)) "

@custNumber) AND (CustEndingSerial Between @beginning AND @ending)) "
@custNumber) AND ((CustBeginningSerial < @beginning) AND (CustEndingSerial > @ending)))";

OleDbCommand selectCommand = new OleDbCommand(checkStatement, connection);
selectCommand.Parameters.AddWithValue("@orderNumber", orderNumber);
selectCommand.Parameters.AddWithValue("@custNumber", custNumber);

selectCommand.Parameters.AddWithValue("@beginning", beginning);
selectCommand.Parameters.AddWithValue("@ending", ending);

try
{
connection.Open();
OleDbDataReader dataReader = selectCommand.ExecuteReader();
if (dataReader.Read())
Check4Duplicates duplicatesYes = new Check4Duplicates
{
DuplicatesYN = true,
OrderNumber = dataReader["OrderNumber"].ToString(),
CustNumber = dataReader["CustomerNumber"].ToString(),
Beginning = dataReader["CustBeginningSerial"].ToString(),
Ending = dataReader["CustEndingSerial"].ToString()
s
return duplicatesYes;
}
else
{
Check4Duplicates duplicatesNo = new Check4Duplicates
DuplicatesYN = false
s
return duplicatesNo;
}
}
catch (OleDbException ex)
{
throw ex;
}
finally
{
connection.Close();
}

Then, depending if customer badge Prefixes should be included when checking for duplicated serial numbers, the SQL statement is:

string checkStatement

@ending)))";

"SELECT OrderNumber, CustBeginningSerial, CustEndingSeria
"FROM Orders "

"WHERE ((OrderNumber <> @orderNumber) AND (CustomerNumber
"OR ((OrderNumber <> @orderNumber) AND (CustomerNumber =
"OR ((OrderNumber <> @orderNumber) AND (CustomerNumber =

+ o+ o+

1, CustPrefix, CustomerNumber

= @custNumber) AND (CustPrefix = @prefix) AND (CustBeginningSerial Between @beginning AND @ending)) "
@custNumber) AND (CustPrefix = @prefix) AND (CustEndingSerial Between @beginning AND @ending)) "
@custNumber) AND (CustPrefix = @prefix) AND ((CustBeginningSerial < @beginning) AND (CustEndingSerial >

And there are a few more based on what should be included when checking for duplicates.

Lastly, one more example.. When the user clicks on the Enter button after inputting an order number on the Order / Serial
Number field, several options..

private void EnterOrderNumber()

{

string orderNumber = txtOrderNumber.Text;
this.GetOrderDetails(orderNumber);
if (order == null)

btnAddOrder.Enabled = true;

}

else

{
string customerNumber = order.CustomerNumber;
this.GetCustomerDetails(customerNumber);

btnModifyOrder.Enabled = true;
btnDeleteOrder.Enabled = true;
txtCustNumber.Text = order.CustomerNumber;
txtCustName.Text = customer.CustomerName;
txtOrderNotes.Text = order.OrderNotes;
txtCustNotes.Text = customer.CustomerNotes;

if (order.MfgQuantity > @)

{
cboMfgFinished.Text = order.MfgFinishedBadge;
cboMfgRequirement.Text = order.MfgRequirementCode;
txtMfgYear.Text = order.MfgYear;

if (order.MfgYearInclude == "Y")
rbMfgYearYes.Checked = true;

}

else
rbMfgYearNo.Checked = true;

}

txtMfgPrefix.Text = order.MfgPrefix;

if (order.MfgPrefixInclude == "Y")
rbMfgPrefixYes.Checked = true;

}

else

rbMfgPrefixNo.Checked = true;

txtMfgBeginning.Text = order.MfgBeginningSerial.ToString();
txtMfgEnding.Text = order.MfgEndingSerial.ToString();
txtMfgCount.Text = order.MfgQuantity.ToString();
txtMfgBadgeNotes.Text = order.MfgNotes;

string statusMfg = order.MfgStatus;
1blMfgStatusIntro.Visible = true;

1blMfgStatus.Visible = true;

lblMfgStatus.Text = statusMmfg;

if (statusMfg == "RESERVED" || statusMfg == "Reserved")

1blMfgStatusChange.Visible = true;
btnMfgStatusChange.Visible = true;

btnAddMfgBadges.Enabled = false;
btnModifyMfgBadges.Enabled = true;
btnDeleteMfgBadges.Enabled = true;
}
else
{
this.ClearMfgBadgeData();
btnAddMfgBadges.Enabled = true;
btnModifyMfgBadges.Enabled = false;
btnDeleteMfgBadges.Enabled = false;
}

if (order.CustQuantity > 0)

{
cboCustFinished.Text = order.CustFinishedBadge;
txtCustPrefix.Text = order.CustPrefix;
if (order.CustPrefixInclude == "Y")

rbCustPrefixYes.Checked = true;
}

else

{
rbCustPrefixNo.Checked = true;

txtCustSuffix.Text = order.CustSuffix;
if (order.CustSuffixInclude == "Y")

rbCustPrefixYes.Checked = true;

}

else
rbCustSuffixNo.Checked = true;

txtCustBeginning.Text = order.CustBeginningSerial.ToString();
txtCustEnding.Text = order.CustEndingSerial.ToString();
txtCustCount.Text = order.CustQuantity.ToString();
txtCustBadgeNotes.Text = order.CustNotes;

string statusCust = order.CustStatus;
1blCustStatusIntro.Visible = true;

1blCustStatus.Visible = true;

1blCustStatus.Text = statusCust;

if (statusCust == "RESERVED" || statusCust == "Reserved")

1lblCustStatusChange.Visible = true;
btnCustStatusChange.Visible = true;
}

btnAddCustBadges.Enabled = false;
btnModifyCustBadges.Enabled = true;
btnDeleteCustBadges.Enabled = true;

else

this.ClearCustBadgeData();
btnAddCustBadges.Enabled = true;
btnModifyCustBadges.Enabled = false;
btnDeleteCustBadges.Enabled = false;

